Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Changes in brain mitochondrial metabolism are coincident with functional decline; however, direct links between the two have not been established. Here, we show that mitochondrial targeting via the adiponectin receptor activator AdipoRon (AR) clears neurofibrillary tangles (NFTs) and rescues neuronal tauopathy-associated defects. AR reduced levels of phospho-tau and lowered NFT burden by a mechanism involving the energy-sensing kinase AMPK and the growth-sensing kinase GSK3b. The transcriptional response to AR included broad metabolic and functional pathways. Induction of lysosomal pathways involved activation of LC3 and p62, and restoration of neuronal outgrowth required the stress-responsive kinase JNK. Negative consequences of NFTs on mitochondrial activity, ATP production, and lipid stores were corrected. Defects in electrophysiological measures (e.g., resting potential, resistance, spiking profiles) were also corrected. These findings reveal a network linking mitochondrial function, cellular maintenance processes, and electrical aspects of neuronal function that can be targeted via adiponectin receptor activation.more » « lessFree, publicly-accessible full text available December 1, 2026
- 
            Autoregulation and neurovascular coupling are key mechanisms that modulate myogenic tone (MT) in vessels to regulate cerebral blood flow (CBF) during resting state and periods of increased neural activity, respectively. To determine relative contributions of distinct vascular zones across different cortical depths in CBF regulation, we developed a simplified yet detailed and computationally efficient model of the mouse cerebrovasculature. The model integrates multiple simplifications and generalizations regarding vascular morphology, the hierarchical organization of mural cells, and potentiation/inhibition of MT in vessels. Our analysis showed that autoregulation is the result of the synergy between these factors, but achieving an optimal balance across all cortical depths and throughout the autoregulation range is a complex task. This complexity explains the non-uniformity observed experimentally in capillary blood flow at different cortical depths. In silico simulations of cerebral autoregulation support the idea that the cerebral vasculature does not maintain a plateau of blood flow throughout the autoregulatory range and consists of both flat and sloped phases. We learned that small-diameter vessels with large contractility, such as penetrating arterioles and precapillary arterioles, have major control over intravascular pressure at the entry points of capillaries and play a significant role in CBF regulation. However, temporal alterations in capillary diameter contribute moderately to cerebral autoregulation and minimally to functional hyperemia. In addition, hemodynamic analysis shows that while hemodynamics within capillaries remain relatively stable across all cortical depths throughout the entire autoregulation range, significant variability in hemodynamics can be observed within the first few branch orders of precapillary arterioles or transitional zone vessels. The computationally efficient cerebrovasculature model, proposed in this study, provides a novel framework for analyzing dynamics of the CBF regulation where hemodynamic and vasodynamic interactions are the foundation on which more sophisticated models can be developed.more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            In tomography, three-dimensional images of a medium are reconstructed from a set of two-dimensional projections. Each projection is the result of a measurement made by the scanner via radiating some form of energy and collecting the scattered field after interacting with the medium. The information content of these measurements is not equal, and one projection can be more informative than others. By choosing the most informative measurement at every step of scanning, an optimal tomography system can maximize the speed of data acquisition and temporal resolution of acquired images, reducing the operation cost and exposure to possible harmful radiations. The aim of this paper is to introduce mathematical algorithms that can be used to design measurements with optimal information content when imaging static or dynamically evolving objects.more » « less
- 
            Duque, Gustavo (Ed.)Abstract The Midwest Aging Consortium (MAC) has emerged as a critical collaborative initiative aimed at advancing our understanding of aging and developing strategies to combat the rising prevalence of age-related diseases. Founded in 2019, MAC brings together researchers from various disciplines and institutions across the Midwestern United States to foster interdisciplinary geroscience research. This report summarizes the highlights of the Fourth Annual Symposium of MAC, which was held at Iowa State University in May 2023. The symposium featured presentations on a wide array of topics, including studies on slow-aging animals, cellular senescence and senotherapeutics, the role of the immune system in aging, metabolic changes in aging, neuronal health in aging, and biomarkers for measuring the aging process. Speakers shared findings from studies involving a variety of animals, ranging from commonly used species such as mice, rats, worms, yeast, and fruit flies, to less-common ones like naked mole-rats, painted turtles, and rotifers. MAC continues to emphasize the importance of supporting emerging researchers and fostering a collaborative environment, positioning itself as a leader in aging research. This symposium not only showcased the current state of aging biology research but also highlighted the consortium’s role in training the next generation of scientists dedicated to improving the healthspan and well-being of the aging population.more » « lessFree, publicly-accessible full text available November 1, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
